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Chapter 3: The Reinforcement 
Learning Problem

• describe the RL problem we will be studying for the 
remainder of the course

• present idealized form of the RL problem for which 
we have precise theoretical results; 

• introduce key components of the mathematics: value 
functions and Bellman equations;

• describe trade'o$s between applicability and 
mathematical tractability.

Objectives of this chapter: 
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The Agent'Environment Interface

  

Agent and environment interact at discrete time steps :   t = 0, 1, 2, K

     Agent observes state at step t :     s
t
!S

     produces action at step t :   a
t
! A(s

t
)

     gets resulting reward :     r
t+1 !"

     and resulting next state :   s
t+1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

2

3

Policy at step t , !
t
:

               a mapping from states to action probabilities

               !
t
(s, a) =  probability that a

t
= a when s

t
= s

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

• Roughly, the agent(s goal is to get as much reward as it 
can over the long run.
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Getting the Degree of Abstraction Right
• Time steps need not refer to !xed intervals of real time.

• Actions can be low level "e.g., voltages to motors#, or high level 
"e.g., accept a job o$er#, %mental& "e.g., shift in focus of attention#, 
etc.

• States can be low'level %sensations&, or they can be abstract, 
symbolic, based on memory, or subjective "e.g., the state of being 
%surprised& or %lost&#.

• An RL agent is not like a whole animal or robot, which consist of 
many RL agents as well as other components.

• The environment is not necessarily unknown to the agent, only 
incompletely controllable.

• Reward computation is in the agent(s environment because the 
agent cannot change it arbitrarily. 
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Goals and Rewards

• Is a scalar reward signal an adequate notion of a goal?)
maybe not, but it is surprisingly *exible.

• A goal should specify what we want to achieve, not how 

we want to achieve it.

• A goal must be outside the agent(s direct control)thus 
outside the agent.

• The agent must be able to measure success:

• explicitly;

• frequently during its life'span.
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Returns

  

Suppose the sequence of rewards after step t is :

                         r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,  

we want to maximize the expected return,  E R
t{ },  for each step t.

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze. 

  
R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a !nal time step at which a terminal state is 
reached, ending an episode.
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Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

  

            R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $ ! $ 1, is the discount rate.

shortsighted  0 !" # 1  farsighted
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An Example

Avoid failure: the pole falling beyond a 
critical angle or the cart hitting end of track.

reward  = +1 for each step before failure

!   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = !1 upon failure;  0 otherwise

"   return is related to  ! # k,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example

Get to the top of the hill
as quickly as possible. 

reward  = !1 for each step where not at top of hill

"   return =  ! number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps reach the top of the hill. 
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A Uni!ed Notation
• In episodic tasks, we number the time steps of each episode 

starting from zero.

• We usually do not have to distinguish between episodes, so 
we write       instead of         for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that 
always produces reward of zero:

• We can cover all cases by writing

s
t

st, j

                                                                R
t
= ! k

r
t+k +1,

k =0

"

#

where ! can be 1 only if a zero reward absorbing state is always reached.
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• By %the state& at step t, the book means whatever information is 
available to the agent at step t about its environment.

• The state can include immediate %sensations,& highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

• Ideally, a state should summarize past sensations so as to retain all 
%essential& information, i.e., it should have the Markov Property: 
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The Markov Property

  

Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
,s

0
,a

0{ } =

                                                             Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t{ }
for all ! s , r, and histories s

t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
, s

0
,a

0
. 
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Markov Decision Processes
• If a reinforcement learning task has the Markov Property, it 

is basically a Markov Decision Process (MDP).

• If state and action sets are !nite, it is a finite MDP. 

• To de!ne a !nite MDP, you need to give:

• state and action sets

• one'step %dynamics& de!ned by transition probabilities

• reward expectations:

P
s ! s 

a = Pr s
t +1 = ! s s

t
= s, a

t
= a{ }   for all s, ! s "S, a "A(s).

R
s ! s 

a = E r
t +1 s

t
= s, a

t
= a, s

t +1 = ! s { }   for all s, ! s "S, a"A(s).

12



13

Recycling Robot 

An Example Finite MDP

• At each step, robot has to decide whether it should "1# 
actively search for a can, "2# wait for someone to bring it a 
can, or "3# go to home base and recharge. 

• Searching is better but runs down the battery; if runs out 
of power while searching, has to be rescued "which is bad#.

• Decisions made on basis of current energy level: high, 
low.
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Recycling Robot MDP

  

S = high ,low{ }

A(high) = search , wait{ }

A(low) = search ,wait, recharge{ }   

R
search

=  expected no. of cans while searching

R
wait

=  expected no. of cans while waiting

                     Rsearch > Rwait
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Value Functions

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
% 
& 
' 

( 
) 
* 

Action- value function for policy ! :

Q
!
(s, a) = E! Rt st = s, at = a{ } = E! " k

rt+ k+1 st = s,at = a
k= 0

#

$
% 
& 
' 

( 
) 
* 

• The value of a state is the expected return starting 
from that state; depends on the agent(s policy:

• The value of taking an action in a state under policy 

!  is the expected return starting from that state, 
taking that action, and thereafter following ! :
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Bellman Equation for a Policy !

  

R
t
= r

t+1 + ! rt+2 +!
2
r
t+ 3 +!

3
r
t+ 4L

= r
t+1 + ! r

t+2 + ! rt+3 + !
2

r
t+ 4L( )

= r
t+1 + ! Rt+1

The basic idea: 

So: V
!
(s) = E! R

t
s
t
= s{ }

= E! r
t+1 + "V

!
s
t+1( ) st = s{ }

Or, without the expectation operator: 

V
!
(s) = ! (s, a) P

s " s 

a

R
s " s 

a

+ #V
!
( " s )[ ]

" s 

$
a

$
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More on the Bellman Equation

V
!
(s) = ! (s, a) P

s " s 

a

R
s " s 

a

+ #V
!
( " s )[ ]

" s 

$
a

$

This is a set of equations "in fact, linear#, one for each state.
The value function for !  is its unique solution.

Backup diagrams:

for V
!

for Q
!
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Gridworld

• Actions: north, south, east, west; deterministic.

• If would take agent o$ the grid: no move but reward = +1

• Other actions produce reward = 0, except actions that 
move agent out of special states A and B as shown.

State'value function 
for equiprobable 
random policy;
" = 0.9
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Golf
• State is ball location

• Reward of +1 for each stroke 
until the ball is in the hole

• Value of a state?

• Actions: 

• putt "use putter#

• driver "use driver#

• putt succeeds anywhere on 
the green 
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• For !nite MDPs, policies can be partially ordered: 

• There is always at least one "and possibly many#  policies that 
is better than or equal to all the others. This is an optimal 
policy. We denote them all ! *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value 
function:
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! " # !     if and only if  V
!

(s) " V
# ! 
(s)  for all s $S

Optimal Value Functions

V
!
(s) = max

"
V
"
(s)    for all  s #S

Q
!
(s, a) = max

"
Q

"
(s, a)  for all  s #S and a #A(s)

This is the expected return for taking action a in 
state s  and thereafter following an optimal policy.
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Optimal Value Function for Golf

• We can hit the ball farther with driver than with 
putter, but with less accuracy

• Q*"s,driver# gives the value or using driver !rst, then 
using whichever actions are best
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Bellman Optimality Equation for V*

V
!
(s) = max

a"A( s)
Q

# !

(s,a)

= max
a"A( s)

E r
t +1 + $ V

!
(s

t +1) s
t

= s, a
t

= a{ }

= max
a"A( s)

P
s % s 

a

% s 

& R
s % s 

a + $V !( % s )[ ]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.V
!
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Bellman Optimality Equation for Q*

Q
!
(s, a) = E r

t +1 + " max
# a 

Q
!
( # s , # a ) s

t
= s,a

t
= a{ }

= P
s # s 

a
R

s # s 

a +" max
# a 

Q
!
( # s , # a )[ ]

# s 

$

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.Q
*
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Therefore, given     , one'step'ahead search produces the 
long'term optimal actions.
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Why Optimal State'Value Functions are Useful

V
!

V
!

Any policy that is greedy with respect to       is an optimal policy.

E.g., back to the gridworld:
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What About Optimal Action'Value Functions?

Given      , the agent does not even have to do a one'step'
ahead search:  

Q
*

!
"
(s) = argmax

a#A (s)
Q

"
(s, a)
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Solving the Bellman Optimality Equation
• Finding an optimal policy by solving the Bellman Optimality Equation 

requires the following:

• accurate knowledge of environment dynamics;

• we have enough space and time to do the computation;

• the Markov Property.

• How much space and time do we need?

• polynomial in number of states "via dynamic programming 
methods; Chapter 4#,

• BUT, number of states is often huge "e.g., backgammon has about 
10**20 states#.

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately solving the 
Bellman Optimality Equation.
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Summary

• Agent'environment interaction

• States

• Actions

• Rewards

• Policy: stochastic rule for 
selecting actions

• Return: the function of future 
rewards agent tries to maximize

• Episodic and continuing tasks

• Markov Property

• Markov Decision Process

• Transition probabilities

• Expected rewards

• Value functions

• State'value function for a policy

• Action'value function for a policy

• Optimal state'value function

• Optimal action'value function

• Optimal value functions

• Optimal policies

• Bellman Equations

• The need for approximation
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