
1

Chapter 3: The Reinforcement
Learning Problem

• describe the RL problem we will be studying for the
remainder of the course

• present idealized form of the RL problem for which
we have precise theoretical results;

• introduce key components of the mathematics: value
functions and Bellman equations;

• describe trade'o$s between applicability and
mathematical tractability.

Objectives of this chapter:

1

2

The Agent'Environment Interface

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

 Agent observes state at step t : s
t
!S

 produces action at step t : a
t
! A(s

t
)

 gets resulting reward : r
t+1 !"

 and resulting next state : s
t+1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

2

3

Policy at step t , !
t
:

 a mapping from states to action probabilities

 !
t
(s, a) = probability that a

t
= a when s

t
= s

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

• Roughly, the agent(s goal is to get as much reward as it
can over the long run.

3

4

Getting the Degree of Abstraction Right
• Time steps need not refer to !xed intervals of real time.

• Actions can be low level "e.g., voltages to motors#, or high level
"e.g., accept a job o$er#, %mental& "e.g., shift in focus of attention#,
etc.

• States can be low'level %sensations&, or they can be abstract,
symbolic, based on memory, or subjective "e.g., the state of being
%surprised& or %lost&#.

• An RL agent is not like a whole animal or robot, which consist of
many RL agents as well as other components.

• The environment is not necessarily unknown to the agent, only
incompletely controllable.

• Reward computation is in the agent(s environment because the
agent cannot change it arbitrarily.

4

5

Goals and Rewards

• Is a scalar reward signal an adequate notion of a goal?)
maybe not, but it is surprisingly *exible.

• A goal should specify what we want to achieve, not how

we want to achieve it.

• A goal must be outside the agent(s direct control)thus
outside the agent.

• The agent must be able to measure success:

• explicitly;

• frequently during its life'span.

5

6

Returns

Suppose the sequence of rewards after step t is :

 r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,

we want to maximize the expected return, E R
t{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a !nal time step at which a terminal state is
reached, ending an episode.

6

7

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

 R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $! $ 1, is the discount rate.

shortsighted 0 !" # 1 farsighted

7

8

An Example

Avoid failure: the pole falling beyond a
critical angle or the cart hitting end of track.

reward = +1 for each step before failure

! return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = !1 upon failure; 0 otherwise

" return is related to ! # k, for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

8

9

Another Example

Get to the top of the hill
as quickly as possible.

reward = !1 for each step where not at top of hill

" return = ! number of steps before reaching top of hill

Return is maximized by minimizing
number of steps reach the top of the hill.

9

10

A Uni!ed Notation
• In episodic tasks, we number the time steps of each episode

starting from zero.

• We usually do not have to distinguish between episodes, so
we write instead of for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that
always produces reward of zero:

• We can cover all cases by writing

s
t

st, j

 R
t
= ! k

r
t+k +1,

k =0

"

#

where ! can be 1 only if a zero reward absorbing state is always reached.

10

• By %the state& at step t, the book means whatever information is
available to the agent at step t about its environment.

• The state can include immediate %sensations,& highly processed
sensations, and structures built up over time from sequences of
sensations.

• Ideally, a state should summarize past sensations so as to retain all
%essential& information, i.e., it should have the Markov Property:

11

The Markov Property

Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
,s

0
,a

0{ } =

 Pr s
t +1

= ! s , r
t +1

= r s
t
,a

t{ }
for all ! s , r, and histories s

t
,a

t
,r

t
, s

t"1
,a

t"1
,K, r

1
, s

0
,a

0
.

11

12

Markov Decision Processes
• If a reinforcement learning task has the Markov Property, it

is basically a Markov Decision Process (MDP).

• If state and action sets are !nite, it is a finite MDP.

• To de!ne a !nite MDP, you need to give:

• state and action sets

• one'step %dynamics& de!ned by transition probabilities

• reward expectations:

P
s ! s

a = Pr s
t +1 = ! s s

t
= s, a

t
= a{ } for all s, ! s "S, a "A(s).

R
s ! s

a = E r
t +1 s

t
= s, a

t
= a, s

t +1 = ! s { } for all s, ! s "S, a"A(s).

12

13

Recycling Robot

An Example Finite MDP

• At each step, robot has to decide whether it should "1#
actively search for a can, "2# wait for someone to bring it a
can, or "3# go to home base and recharge.

• Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued "which is bad#.

• Decisions made on basis of current energy level: high,
low.

13

14

Recycling Robot MDP

S = high ,low{ }

A(high) = search , wait{ }

A(low) = search ,wait, recharge{ }

R
search

= expected no. of cans while searching

R
wait

= expected no. of cans while waiting

 Rsearch > Rwait

14

15

Value Functions

State - value function for policy ! :

V
!
(s) = E! R

t
s
t

= s{ } = E! " k
r
t+k +1 s

t
= s

k =0

#

$
%
&
'

(
)
*

Action- value function for policy ! :

Q
!
(s, a) = E! Rt st = s, at = a{ } = E! " k

rt+ k+1 st = s,at = a
k= 0

#

$
%
&
'

(
)
*

• The value of a state is the expected return starting
from that state; depends on the agent(s policy:

• The value of taking an action in a state under policy

! is the expected return starting from that state,
taking that action, and thereafter following ! :

15

16

Bellman Equation for a Policy !

R
t
= r

t+1 + ! rt+2 +!
2
r
t+ 3 +!

3
r
t+ 4L

= r
t+1 + ! r

t+2 + ! rt+3 + !
2

r
t+ 4L()

= r
t+1 + ! Rt+1

The basic idea:

So: V
!
(s) = E! R

t
s
t
= s{ }

= E! r
t+1 + "V

!
s
t+1() st = s{ }

Or, without the expectation operator:

V
!
(s) = ! (s, a) P

s " s

a

R
s " s

a

+ #V
!
(" s)[]

" s

$
a

$

16

17

More on the Bellman Equation

V
!
(s) = ! (s, a) P

s " s

a

R
s " s

a

+ #V
!
(" s)[]

" s

$
a

$

This is a set of equations "in fact, linear#, one for each state.
The value function for ! is its unique solution.

Backup diagrams:

for V
!

for Q
!

17

18

Gridworld

• Actions: north, south, east, west; deterministic.

• If would take agent o$ the grid: no move but reward = +1

• Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

State'value function
for equiprobable
random policy;
" = 0.9

18

19

Golf
• State is ball location

• Reward of +1 for each stroke
until the ball is in the hole

• Value of a state?

• Actions:

• putt "use putter#

• driver "use driver#

• putt succeeds anywhere on
the green

19

• For !nite MDPs, policies can be partially ordered:

• There is always at least one "and possibly many# policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all ! *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value
function:

20

! " # ! if and only if V
!

(s) " V
!
(s) for all s $S

Optimal Value Functions

V
!
(s) = max

"
V
"
(s) for all s #S

Q
!
(s, a) = max

"
Q

"
(s, a) for all s #S and a #A(s)

This is the expected return for taking action a in
state s and thereafter following an optimal policy.

20

21

Optimal Value Function for Golf

• We can hit the ball farther with driver than with
putter, but with less accuracy

• Q*"s,driver# gives the value or using driver !rst, then
using whichever actions are best

21

22

Bellman Optimality Equation for V*

V
!
(s) = max

a"A(s)
Q

!

(s,a)

= max
a"A(s)

E r
t +1 + $ V

!
(s

t +1) s
t

= s, a
t

= a{ }

= max
a"A(s)

P
s % s

a

% s

& R
s % s

a + $V !(% s)[]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.V
!

22

23

Bellman Optimality Equation for Q*

Q
!
(s, a) = E r

t +1 + " max
a

Q
!
(# s , # a) s

t
= s,a

t
= a{ }

= P
s # s

a
R

s # s

a +" max
a

Q
!
(# s , # a)[]

s

$

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.Q
*

23

Therefore, given , one'step'ahead search produces the
long'term optimal actions.

24

Why Optimal State'Value Functions are Useful

V
!

V
!

Any policy that is greedy with respect to is an optimal policy.

E.g., back to the gridworld:

24

25

What About Optimal Action'Value Functions?

Given , the agent does not even have to do a one'step'
ahead search:

Q
*

!
"
(s) = argmax

a#A (s)
Q

"
(s, a)

25

26

Solving the Bellman Optimality Equation
• Finding an optimal policy by solving the Bellman Optimality Equation

requires the following:

• accurate knowledge of environment dynamics;

• we have enough space and time to do the computation;

• the Markov Property.

• How much space and time do we need?

• polynomial in number of states "via dynamic programming
methods; Chapter 4#,

• BUT, number of states is often huge "e.g., backgammon has about
10**20 states#.

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately solving the
Bellman Optimality Equation.

26

27

Summary

• Agent'environment interaction

• States

• Actions

• Rewards

• Policy: stochastic rule for
selecting actions

• Return: the function of future
rewards agent tries to maximize

• Episodic and continuing tasks

• Markov Property

• Markov Decision Process

• Transition probabilities

• Expected rewards

• Value functions

• State'value function for a policy

• Action'value function for a policy

• Optimal state'value function

• Optimal action'value function

• Optimal value functions

• Optimal policies

• Bellman Equations

• The need for approximation

27

